Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Double-step resistive superconducting transitions of indium and gallium in porous glass

Identifieur interne : 000A72 ( Russie/Analysis ); précédent : 000A71; suivant : 000A73

Double-step resistive superconducting transitions of indium and gallium in porous glass

Auteurs : RBID : Pascal:00-0246023

Descripteurs français

English descriptors

Abstract

We studied indium and gallium in porous glass by resistance and magnetization measurements. For indium in porous glass, a very sharp superconducting transition is observed at T1=4.0±0.05K. When a 1.5 T magnetic field is applied, there is a second transition at T2∼3.5K. At 3.5 K, the field dependence of resistance R(H) indicates two transitions at Hcu∼1.4 and Hcl∼0.4T separated by a plateau. For indium in porous glass, the origins of two-step transitions in R(T) and R(H) might be the same. At Hcu (or T1) the individual grains of indium in porous glass become superconductors and at Hcl (or T2) all grains are coupled. For gallium in porous glass, two superconducting transitions of R(T) at T1=7.0 and T2=6.3K are observed. Between 6.35 and 6.30 K, R(T) increases sharply with decreasing temperature. The quasiparticle tunneling or the conductor-superconductor-conductor coupling might cause the sharp rise in resistance between 6.35 and 6.30 K. At 6 K, there are two transitions at Hcu=2.1T and Hcl=1.1T in the R(H) for gallium in porous glass. The two different transitions of R(H) might be caused by a filamentary internal structure of gallium crystallites. There is no diamagnetism at T1. The magnetic transition temperature TM at 3, 4, 5, 6, and 7 T are measured; for all the cases, TM2.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0246023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Double-step resistive superconducting transitions of indium and gallium in porous glass</title>
<author>
<name sortKey="Tien, C" uniqKey="Tien C">C. Tien</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Physics, National Cheng Kung University, Tainan, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics, St. Petersburg State University, St. Petersburg, Russia</s1>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Physics, St. Petersburg State University, St. Petersburg</wicri:regionArea>
<wicri:noRegion>St. Petersburg</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>A.I. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia</s1>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.I. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg</wicri:regionArea>
<wicri:noRegion>St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wur, C S" uniqKey="Wur C">C. S. Wur</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Physics, National Cheng Kung University, Tainan, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, K J" uniqKey="Lin K">K. J. Lin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Physics, National Cheng Kung University, Tainan, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Charnaya, E V" uniqKey="Charnaya E">E. V. Charnaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Physics, National Cheng Kung University, Tainan, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumzerov, Yu A" uniqKey="Kumzerov Y">Yu. A. Kumzerov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Physics, National Cheng Kung University, Tainan, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0246023</idno>
<date when="2000-06-01">2000-06-01</date>
<idno type="stanalyst">PASCAL 00-0246023 AIP</idno>
<idno type="RBID">Pascal:00-0246023</idno>
<idno type="wicri:Area/Main/Corpus">013057</idno>
<idno type="wicri:Area/Main/Repository">011F65</idno>
<idno type="wicri:Area/Russie/Extraction">000A72</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0163-1829</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter</title>
<title level="j" type="main">Physical review. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Composite superconductors</term>
<term>Electrical resistivity</term>
<term>Gallium</term>
<term>Glass</term>
<term>Indium</term>
<term>Magnetization</term>
<term>Quasiparticles</term>
<term>Superconducting critical field</term>
<term>Superconducting transition temperature</term>
<term>Superconductive tunneling</term>
<term>Theoretical study</term>
<term>superconducting transitions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7480B</term>
<term>7425F</term>
<term>Etude théorique</term>
<term>Indium</term>
<term>Gallium</term>
<term>Verre</term>
<term>Température transition supraconductrice</term>
<term>Champ critique supraconducteur</term>
<term>Effet tunnel supraconducteur</term>
<term>Quasiparticule</term>
<term>Supraconducteur composite</term>
<term>Aimantation</term>
<term>Résistivité électrique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We studied indium and gallium in porous glass by resistance and magnetization measurements. For indium in porous glass, a very sharp superconducting transition is observed at T
<sub>1</sub>
=4.0±0.05K. When a 1.5 T magnetic field is applied, there is a second transition at T
<sub>2</sub>
∼3.5K. At 3.5 K, the field dependence of resistance R(H) indicates two transitions at H
<sub>c</sub>
<sup>u</sup>
∼1.4 and H
<sub>c</sub>
<sup>l</sup>
∼0.4T separated by a plateau. For indium in porous glass, the origins of two-step transitions in R(T) and R(H) might be the same. At H
<sub>c</sub>
<sup>u</sup>
(or T
<sub>1</sub>
) the individual grains of indium in porous glass become superconductors and at H
<sub>c</sub>
<sup>l</sup>
(or T
<sub>2</sub>
) all grains are coupled. For gallium in porous glass, two superconducting transitions of R(T) at T
<sub>1</sub>
=7.0 and T
<sub>2</sub>
=6.3K are observed. Between 6.35 and 6.30 K, R(T) increases sharply with decreasing temperature. The quasiparticle tunneling or the conductor-superconductor-conductor coupling might cause the sharp rise in resistance between 6.35 and 6.30 K. At 6 K, there are two transitions at H
<sub>c</sub>
<sup>u</sup>
=2.1T and H
<sub>c</sub>
<sup>l</sup>
=1.1T in the R(H) for gallium in porous glass. The two different transitions of R(H) might be caused by a filamentary internal structure of gallium crystallites. There is no diamagnetism at T
<sub>1</sub>
. The magnetic transition temperature T
<sub>M</sub>
at 3, 4, 5, 6, and 7 T are measured; for all the cases, T
<sub>M</sub>
<sub>2</sub>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0163-1829</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter</s0>
</fA03>
<fA05>
<s2>61</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Double-step resistive superconducting transitions of indium and gallium in porous glass</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TIEN (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WUR (C. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIN (K. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHARNAYA (E. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUMZEROV (Yu. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, National Cheng Kung University, Tainan, Taiwan, Republic of China</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Physics, St. Petersburg State University, St. Petersburg, Russia</s1>
</fA14>
<fA14 i1="03">
<s1>A.I. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia</s1>
</fA14>
<fA20>
<s1>14833-14838</s1>
</fA20>
<fA21>
<s1>2000-06-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0246023</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We studied indium and gallium in porous glass by resistance and magnetization measurements. For indium in porous glass, a very sharp superconducting transition is observed at T
<sub>1</sub>
=4.0±0.05K. When a 1.5 T magnetic field is applied, there is a second transition at T
<sub>2</sub>
∼3.5K. At 3.5 K, the field dependence of resistance R(H) indicates two transitions at H
<sub>c</sub>
<sup>u</sup>
∼1.4 and H
<sub>c</sub>
<sup>l</sup>
∼0.4T separated by a plateau. For indium in porous glass, the origins of two-step transitions in R(T) and R(H) might be the same. At H
<sub>c</sub>
<sup>u</sup>
(or T
<sub>1</sub>
) the individual grains of indium in porous glass become superconductors and at H
<sub>c</sub>
<sup>l</sup>
(or T
<sub>2</sub>
) all grains are coupled. For gallium in porous glass, two superconducting transitions of R(T) at T
<sub>1</sub>
=7.0 and T
<sub>2</sub>
=6.3K are observed. Between 6.35 and 6.30 K, R(T) increases sharply with decreasing temperature. The quasiparticle tunneling or the conductor-superconductor-conductor coupling might cause the sharp rise in resistance between 6.35 and 6.30 K. At 6 K, there are two transitions at H
<sub>c</sub>
<sup>u</sup>
=2.1T and H
<sub>c</sub>
<sup>l</sup>
=1.1T in the R(H) for gallium in porous glass. The two different transitions of R(H) might be caused by a filamentary internal structure of gallium crystallites. There is no diamagnetism at T
<sub>1</sub>
. The magnetic transition temperature T
<sub>M</sub>
at 3, 4, 5, 6, and 7 T are measured; for all the cases, T
<sub>M</sub>
<sub>2</sub>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D80B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70D25F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7480B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7425F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Verre</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Glass</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>superconducting transitions</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Température transition supraconductrice</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Superconducting transition temperature</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Champ critique supraconducteur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Superconducting critical field</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet tunnel supraconducteur</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Superconductive tunneling</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Quasiparticule</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quasiparticles</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Supraconducteur composite</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Composite superconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Aimantation</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnetization</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Résistivité électrique</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electrical resistivity</s0>
</fC03>
<fN21>
<s1>164</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0023M000760</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000A72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:00-0246023
   |texte=   Double-step resistive superconducting transitions of indium and gallium in porous glass
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024